Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## He-Lian Chen and Hong-Wu He*

Key Laboratory of Pesticides and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
he1208@mail.ccnu.edu.cn

## Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
$R$ factor $=0.050$
$w R$ factor $=0.123$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## 5-Methyl-2-morpholino-3-p-tolyl-8,9,10,11-tetra-hydro-2-benzothieno[2', $\left.3^{\prime}: 6,5\right]$ pyrido[4,3-d]-pyrimidin-4(3H)-one

In the title compound, $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$, the central tricyclic system is essentially planar. The crystal stacking is governed mainly due to $\pi-\pi$ interactions.

## Comment

Among many known heterocyclic compounds, derivatives containing a pyridine system have received much attention since they have been demonstrated to possess significant biological activity (Augusto et al., 1995). The title compound, (I), belongs to this family of heterocyclic compounds and we present its crystal structure here.


Selected bond lengths and angles are listed in Table 1. In (I) (Fig. 1), the $\mathrm{C}-\mathrm{S}$ bonds are longer than those observed in free thiophene [1.714 (3) Å; Bonham \& Momany, 1963] and thieno[2,3-c]pyridine $[1.728$ (1) and 1.731 (1) $\AA$; Nerenz et al., 1997]. The C8-S1-C angle in (I) is slightly narrower than that observed in free thiophene [92.2 (2) ${ }^{\circ}$. C3 and C4 of the cyclohexene ring are each disordered over two positions.

The short intermolecular distances between the centroids of the pyridine $(C g 3)$ and pyrimidine $(C g 4)$ rings $\left[C g 3 \cdots C g 4^{i}=\right.$ 3.7799 (11) $\AA$; symmetry code: (i) $1-x, y, 1-z$ ] indicate the existence of $\pi-\pi$ stacking interactions (Janiak, 2000), which stabilize the crystal packing (Fig. 2).

## Experimental

4-Amino-3-ethoxycarbonyl-2-methyl-5,6,7,8-(4H)-tetrahydro-2-benzothieno[2,3-b]pyridine, (II), was prepared according to a literature procedure (Augusto et al., 1995) in $90 \%$ yield. The the iminophosphorane of (II) was obtained in $82 \%$ yield according to a literature synthetic method (Wamhoff et al., 1993). To a solution of iminophosphorane of (II) $(1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and a catalytic amount of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.05 \mathrm{mmol})$ was added 4-methylphenyl isocyanate ( 1.1 mmol ) (Ding et al., 1999). After the reaction mixture had been left to stand for 6 h , the solvent was removed under

Received 25 February 2006
Accepted 27 February 2006
reduced pressure and $\mathrm{Et}_{2} \mathrm{O}$ /petroleum ether ( $2: 1 \mathrm{v} / \mathrm{v}$ ) was added to precipitate the side product triphenylphosphine oxide, which was then removed by filtration. Subsequent removal of the solvent gave the corresponding carbodiimide, which was used directly without further purification. To a solution of the carbodiimide in ethanol $(15 \mathrm{ml})$ were added morphine $(1.1 \mathrm{mmol})$ and a catalytic amount of sodium ethoxide in ethanol (Wang et al., 2004). After the mixture had been stirred for 12 h at 300 K , the solution was concentrated and the residue was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$, giving colorless prismatic block-shaped crystals of the title compound after one week.

## Crystal data

$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=446.56$
Triclinic, $P \overline{1}$
$a=9.5216(9) \AA$
$b=11.0760(10) \AA$
$c=12.5294(11) \AA$
$\alpha=105.036(2)^{\circ}$
$\beta=101.193(2)^{\circ}$
$\gamma=114.050(2)^{\circ}$
$V=1095.93(17) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.353 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 3408 \\
& \quad \text { reflections } \\
& \theta=2.5-28.2^{\circ} \\
& \mu=0.18 \mathrm{~mm}^{-1} \\
& T=292(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.30 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Bruker SMART CCD area-detector
diffractometer
3570 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.069$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-12 \rightarrow 12$
$k=-14 \rightarrow 14$
$l=-16 \rightarrow 16$
Absorption correction: none
12852 measured reflections
4978 independent reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.123$
$S=0.95$
4978 reflections
310 parameters


Figure 1
View of (I), showing the labelling scheme and $50 \%$ probability displacement ellipsoids. Both disorder components are shown.


Figure 2
The packing of (I). Only one disorder component is shown.

2003CB114400) and the National Natural Science Foundation of China (No. 20372023).

## References

Augusto, C. Y., Rosella, C. \& Carlo, F. M. (1995). Tetrahedron, 51, $12277-$ 12284.

Bonham, R. A. \& Momany, F. A. (1963). J. Phys. Chem. 67, 2474-2477.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SMART (Version 5.059) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.
Ding, M. W., Xu, Z. F. \& Wang, T. J. (1999). Synth. Commun. 29, 1171-1176.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Nerenz, H., Grahn, W. \& Jones, P. G. (1997). Acta Cryst. C53, 787-789.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wamhoff, H., Herrmann, S. \& Stölben, S. (1993). Tetrahedron, 49, 581-583.
Wang, H. Q., Liu, Z. J., Yang, L. M. \& Ding, M. W. (2004). J. Heterocycl. Chem. 41, 393-397.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

